Un analogue mésoscopique du “paradoxe de Braess” mis en évidence grâce aux sondes locales

M.G. Pala1, S. Baltazar1, P. Liu2, H. Sellier2, B. Hackens3, F. Martins3, V. Bayot2,3, L. Desplanque4, X. Wallart4, \textbf{Serge Huant}2

\begin{itemize}
 \item 1IMEP- MINATEC, Grenoble, France
 \item 2Institut Néel, CNRS & UJF Grenoble, France
 \item 3UCLouvain, Louvain-la-Neuve, Belgium
 \item 4IEMN, Lille, France
\end{itemize}
Outline

• What is “Braess paradox”?
• Introduction to Scanning-Gate Microscopy (SGM).
• Quantum simulations of a mesoscopic Braess paradox.
• SGM experiments and interpretation.
• Conclusion.
The original Braess paradox for road network

Braess (1968): Adding extra road to a congested network, where the drivers can freely choose their route, can in some cases reduce overall performance, i.e. increase the travel time to all drivers.

• In some cases, e.g. Seoul, closing a well-selected high-speed road counter-intuitively relieves congestion !!

Theoretical framework: Game theory explains the original Braess paradox quite well.
The extension to other classical networks, e.g. electrical

A Wheatstone bridge with non-linear Zener diodes at constant injected current = 1/2 A → At equilibrium, a 1/4 A current flows in each branch → voltage drop= 5/4 V.

An additional (lower-voltage) Zener bypasses the two branches → At equilibrium, the entire current flows through $R_2-Z_3-R_4$ because the 1V Zener are blocked → voltage drop = 11/8 V > 5/4 V.

Braess paradox: Offering a new “zero-impedance” path to current increases impedance!

Note: If only linear components are used, no paradox occurs.
Known so far for classical networks only, we now have extended Braess’s paradox to the quantum world thanks to Scanning-Gate Microscopy:

SGM versus STM

STM
Scanning Tunneling Microscopy

- conducting surfaces
- tunnelling current
- interference effects & local density of states (LDOS)

SGM
Scanning Gate Microscopy

- insulating surfaces
- **buried** high mobility 2DEG heterostructure
- **device conductance** perturbed by local gate effects

→ GOAL: local studies of electron systems not accessible to STM; locally perturb or control the electron transport.
SGM probes

NO LIGHT! → Use of piezoelectric quartz tuning fork
Karrai (1995) for NSOM → AFM, STM, SGM

STM tip glued to one metallic pad of the tuning fork

Our favorite: conductive AFM cantilever glued to one metallic pad of the tuning fork
Homemade AFM: low temp. = 4 K and high magnetic field = 9 T.
Simulations of a rectangular mesoscopic network (I)

Quantum simulations of spatial distribution current density $|J|(X,Y)$ of:

- Rectangular corral with "mesoscopic" dimensions (smaller or comparable to mean-free path & coherence length at 4 K).
- Made of a GaInAs/AlInAs heterostructure: 2DEG of carrier density $= 3.5 \times 10^{11}\text{cm}^{-2}$ (Fermi wavelength around 40 nm) and mobility $= 100000 \text{cm}^2\text{V}^{-1}\text{s}^{-1}$.

Congestion decreases!

Transmitted current decreases!
Simulations of a rectangular mesoscopic network (II)

On adding a 3rd path, J_3 increases first but $J_1 + J_2$ decreases more rapidly.

Partial and total currents

Current increases back

Total current drops:

BRAESS ?!
SGM experiments

Non contact SGM

Tapping Topo.

\(\Delta G = G(V_{\text{tip}}) - G(0) \) (2e^2/h)
Counter-intuitive conductance increase

Simulation with tip included

Experiment
Insight into the microscopic behaviour (simulations)

\[|J|(X,Y) \]

Scanning large (fully depleting) tip potential

Conclusions

A mesoscopic Braess-like paradox has been discovered →

Many questions:

• What is the microscopic origin?

• How far the analogy with the classical paradox can be made?

• What is the best suited geometry?

• What’s about a plasmonic Braess-like paradox?

• Towards new electronic devices?

• …..
MERCI !