AFM nanomechanical mapping to understand the structure and behavior of polymer blends compatibilized with ionic liquids

Benjamin Megevand, Sébastien Pruvost, Jannick Duchet-Rumeau

IMP (Lyon)

23 mars 2017

Research question

How nanomechanics can help to understand macroscopic mechanical behavior of polymers/composites?

Table of contents

- Materials / Methods
 - Materials, context
 - AFM setup
- Results
 - Morphology
 - Nanoscale moduli
 - Interfaces
 - Modelization
- 3 Conclusions / Further work

• Biopolymers tend to replace oil-based polymers

Problem: They have to match the same properties

• **Biopolymers** tend to replace oil-based polymers

Problem: They have to match the same properties

Solution: Biopolymer blends

• **Biopolymers** tend to replace oil-based polymers

Problem: They have to match the same properties

Solution: Biopolymer blends

Problem: Incompatibility of many polymers give poor results

• **Biopolymers** tend to replace oil-based polymers

Problem: They have to match the same properties

Solution: Biopolymer blends

Problem: Incompatibility of many polymers give poor results

Solution: Compatibilization

Biopolymers tend to replace oil-based polymers

Problem: They have to match the same properties

Solution: Biopolymer blends

Problem: Incompatibility of many polymers give poor results

Solution: Compatibilization

• **lonic liquids** are investigated here as a novel route for compatibilization of biopolymer blends

What are the mechanisms beyond ionic liquids compatibilization?

Materials

Polymer blends compatibilized with lonic Liquids (ILs)

Designation	Chemical Structure
Polymers :	
PBAT	$\begin{array}{c} \text{HO} = \begin{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$
PLA	
Ionic Liquids :	
ii-Cl	C ₀ H ₁₃ O Cl
il-TMP	ċ₅H ₁₃

Extruded/Injected

- PBAT/PLA (80/20 %wt)
- PBAT/PLA/il-Cl (80/20/1 %wt)
- PBAT/PLA/il-TMP (80/20/1 %wt)

Materials

• Macroscopic tensile tests show a sucessful compatibilization :

AFM setup

- AFM : Multimode 8
- Mode PeakForce QNM
- TAP150 tips (Spring constant : 5 N/m)
- Contact model : DMT
- Sample preparation : Cryofracture
- Piezo Frequency : 2 kHz
- Typical PeakForce Setpoint : 20 nN (adjusted depending on the tip)
- Typical scan rate : 0.5 Hz for $3.5 \mu m$ scan rate; 1 Hz for $1 \mu m$ scan rate or less

Probe calibration

- Deflection sensitivity on hard sapphire sample
 - Single ramp calibration
 - Drive3 Amplitude Sensitivity adjusting
 - Calibration in scanning conditions
 - Setting the value of Sync Distance for the whole session
- Spring constant calibration : Thermal tune
- Tip radius calibration : Relative method on PS film

- Materials / Methods
 - Materials, context
 - AFM setup
- Results
 - Morphology
 - Nanoscale moduli
 - Interfaces
 - Modelization
- Conclusions / Further work

Blends morphology

Modulus Quantification

- Compatibilization achieved while each phase shows a modulus decrease
- ⇒ Modification of the interface?

Modulus quantification : Crystalline phase identification

IL-TMP induces the nucleation of crystalline structures into the PLA phase

 \Rightarrow Crystalline phase localized in the center of the PLA fibril

Interfaces: Modulus evolution

• Profile analysis: Evolution of the modulus across PBAT/PLA interfaces

• Thickness of the interfaces :

⇒ With ILs the *interface* becomes an *interphase*

Interfaces: Adhesion of ionic liquids

Interfaces: Adhesion of ionic liquids

Results:

Blend :	Interfacial adheson evolution :
PBAT/PLA	Adhesion step (PBAT-PLA transition)
PBAT/PLA/il-Cl	Large adhesion peak! (more on PBAT side)
PBAT/PLA/il-TMP	Adhesion peak!

⇒ Both ionic liquids are preferentially localized in the generated interphase

Model of the interfaces

neat PBAT/PLA blend :

 Steep modulus/adhesion transition between PBAT and PLA

il-Cl:

- Very thick interphase
- IL mostly in the interphase ⇒ Local miscibility of polymers

il-TMP:

- Cristalline PLA phase in the center of the fibril
- Tick interface
- IL mostly in the interphase

Figure : Interface model deduced from AFM study

- Materials / Methods
 - Materials, context
 - AFM setup
- Results
 - Morphology
 - Nanoscale moduli
 - Interfaces
 - Modelization
- Conclusions / Further work

Conclusions

- AFM nanomechanical study allowed to understand the compatibilization mechanism
 - Structuration
 - Localization of the ionic liquids
 - Effect on the interfaces
 - Localization of a crystalline phase

Further work:

- Deeper study of ILs/polymers interactions
- Extension of the method to composites

Thank you!

- Materials / Methods
 - Materials, context
 - AFM setup
- Results
 - Morphology
 - Nanoscale moduli
 - Interfaces
 - Modelization
- Conclusions / Further work

