Imaging thermoelectric power at the nanoscale

B. Brun 1, S. Toussaint 1, F. Martins 1, S. Faniel 1, B. Hackens 1, V. Bayot 1, D. Mailly 4, U. Gennser 4, X. Wallart 5, L.Desplanque 5, S. Huant 2, M. Sanquer 3, H. Sellier 2

1IMCN/NAPS (UCL), Louvain-la-Neuve (Belgium)
2Institut Néel (CNRS/UJF), Grenoble (France)
3Institut Nanosciences et Cryogénie (CEA), Grenoble (France)
4Laboratoire de Photonique et de Nanostructures (CNRS), Marcoussis (France)
5Université de Lille - IEMN (CNRS), Villeneuve d’Ascq (France)

2017, March 21st
Outline

1. Transport in Quantum Point Contacts (QPCs)

2. Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation

3. Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network

4. Conclusion
Outline

1 Transport in Quantum Point Contacts (QPCs)

2 Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation

3 Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network

4 Conclusion
High mobility 2DEG are grown in LPN, Marcoussis

- Model two-dimensional systems
- Platform to study ballistic transport
- Interesting thermoelectric properties
Quantum Point Contacts (QPC)

Simplest quantum electronic device built in these structures:

QPC conductance is quantized by steps of $2e^2/h$

First realized in 1988:
B. J. van Wees *et al.*, Phys. Rev. Lett (Delft)
D A Wharam *et al.*, Journal of Physics C (Cambridge)
The attached video can be found [here](#).
Feel free to use it on pedagogical purposes.

Visual: Benjamin Kuperberg
Quantum Point Contacts (QPC)

Each mode contributes for $2e^2/h$ to the conductance

\[\text{E}_f \]

\[U \]

\[y \]

\[V_0 \]

\[n=1 \]

\[n=2 \]

\[n=3 \]

\[\hbar \omega_y \]

\[\hbar \omega_x \]
Outline

1. Transport in Quantum Point Contacts (QPCs)

2. Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation

3. Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network

4. Conclusion
Discovery of the thermopower: 1821

Thomas Johann Seebeck
Discovery of the thermopower: 1821

conductor
Discovery of the thermopower: 1821

\[T + \Delta T \quad \text{conductor} \quad T \]
Discovery of the thermopower: 1821

![Diagram of thermopower concept]
Discovery of the thermopower: 1821

Seebeck coefficient:

\[S = \frac{\Delta V}{\Delta T} \]

Order of magnitude for metals: \(-100 \mu V/K < S < +100 \mu V/K\)
Discovery of the thermopower: 1821
Discovery of the thermopower: 1821
Thermopower of quantum point contacts

Differential conductance: $G = dI/dV$

$\mu_R = \mu_L + eV$

$\tau(E)$ vs E
Thermopower of quantum point contacts

Quantum Oscillations in the Transverse Voltage of a Channel in the Nonlinear Transport Regime

L. W. Molenkamp, H. van Houten, C. W. J. Beenakker, and R. Eppenga
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Differential conductance: \(G = \frac{dI}{dV} \)

\(\mu_R = \mu_L + eV \)

Thermopower: \(S = \frac{dV}{dT} \)

\(T_R = T_L + \Delta T \)
Measurement setup

Differential conductance

\[f_\ell \quad \text{Lock-in 2} \quad U \]

\[V_g \quad I \]

\[\text{Lock-in 1} \quad f_\ell \]

\[\text{imc}n \]

\[\begin{align*}
G(\frac{2e^2}{h}) & \quad 6 \\
V_g(V) & \quad -0.7 \quad -0.6 \quad -0.5 \quad -0.4
\end{align*} \]
Measurement setup

Differential conductance

\[U \]

Thermopower

\[2f_h \]

\[U_{\text{th}} \]

\[\text{Vg} \]

\[f_t \]

\[f_h \]

\[V_{\text{ac}} \]

\[f_t \]

\[V_{\text{ac}} \]

Graphs:

- Conductance vs. \[V_g \]
- Voltage vs. \[V_g \]

Institute:

IMCN

Boris Brun (FNRS)
The Mott relation

Mott relation:

\[S_{\text{Mott}} = -\frac{\pi k_B^2 T}{3e} \frac{1}{G} \frac{\partial G}{\partial \mu} \propto \frac{1}{G} \frac{\partial G}{\partial V_g} \]
The Mott relation

Mott relation:

\[S_{Mott} \propto 1/G \frac{\partial G}{\partial V_g} \]
The Mott relation

Mott relation:

\[S_{Mott} \propto \frac{1}{G} \frac{\partial G}{\partial V_g} \]
The Mott relation

Mott relation:

\[S_{\text{Mott}} \propto \frac{1}{G} \frac{\partial G}{\partial V_g} \]
The Mott relation

Mott relation:

\[S_{\text{Mott}} \propto \frac{1}{G} \frac{\partial G}{\partial V_g} \]
The Mott relation

Mott relation:

\[S_{\text{Mott}} \propto \frac{1}{G} \frac{\partial G}{\partial V_g} \]
Outline

1 Transport in Quantum Point Contacts (QPCs)

2 Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation

3 Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network

4 Conclusion
Scanning gate microscopy: principle

Westervelt group, Harvard, 1996
Self-sensing tips

Laser detection of the cantilever is forbidden, therefore:

- Use of piezoelectric cantilever, home-coated
- Glue a tungstene wire (eventually FIB-etched) on a tuning fork
- Glue a commercial tip on a tuning fork
Scanning gate microscopy: principle

Scanning gate microscopy: principle

(Westervelt group, Harvard)
Scanning gate microscopy: principle

See also: M. A. Topinka et al., Nature 410 (2001).
The attached video can be found here
Feel free to use it on pedagogical purposes.

Visual: Benjamin Kuperberg
Imaging quantum transport

Experiments:

![Image of two plots showing G(2e^2/h) vs. y(μm) and x(μm)]
Imaging quantum transport

Calculation:

$|\psi_t|^2$ (a.u.)

$G(2e^2/h)$
Imaging quantum transport
Imaging quantum transport
Imaging quantum transport

Boris Brun (FNRS)

Scanning Gate Thermoelectric microscopy

2017, March 21st
Imaging quantum transport
Imaging quantum transport
Imaging quantum transport
Outline

1 Transport in Quantum Point Contacts (QPCs)

2 Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation

3 Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network

4 Conclusion
Conclusion

- We explore thermopower of two-dimensional electron gases

- A local approach has been developed, inspired by scanning gate microscopy

- In the future, we will focus on other signals (thermal conductivity and Peltier coefficient) and on different materials (graphene)
Conclusion

Thank you,
and let’s go to the Spa!