Imaging thermoelectric power at the nanoscale

B. Brun ¹, S. Toussaint ¹, F. Martins ¹, S. Faniel ¹, B. Hackens ¹, V. Bayot ¹, D. Mailly ⁴, U. Gennser ⁴, X. Wallart ⁵, L.Desplanque ⁵, S. Huant², M. Sanquer ³, H. Sellier ²

¹IMCN/NAPS (UCL), Louvain-la-Neuve (Belgium)

²Institut Néel (CNRS/UJF), Grenoble (France)

³Institut Nanosciences et Cryogénie (CEA), Grenoble (France)

⁴Laboratoire de Photonique et de Nanostructures (CNRS), Marcoussis (France)

⁵Université de Lille - IEMN (CNRS), Villeneuve d'Ascq (France)

Outline

- Transport in Quantum Point Contacts (QPCs)
- Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation
- 3 Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network
- 4 Conclusion

Outline

- 1 Transport in Quantum Point Contacts (QPCs)
- 2 Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation
- 3 Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network
- 4 Conclusion

High mobility 2DEG are grown in LPN, Marcoussis

- Model two-dimensional systems
- Platform to study ballistic transport
- Interesting thermoelectric properties

Quantum Point Contacts (QPC)

Simplest quantum electronic device built in these structures:

QPC conductance is quantized by steps of $2e^2/h$

First realized in 1988:

B. J. van Wees *et al.*, Phys. Rev. Lett (Delft)

D A Wharam *et al.*, Journal of Physics C (Cambridge)

The attached video can be found <u>here</u> Feel free to use it on pedagogical purposes.

Visual: Benjamin Kuperberg

Quantum Point Contacts (QPC)

Each mode contributes for $2e^2/h$ to the conductance

Outline

- **Thermopower**
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation
- - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network

Thomas Johann Seebeck

conductor

Seebeck coefficient:

$$S = \frac{\Delta V}{\Delta T}$$

Order of magnitude for metals: $-100 \mu V/K < S < +100 \mu V/K$

Thermopower of quantum point contacts

Thermopower of quantum point contacts

VOLUME 65, NUMBER 8

PHYSICAL REVIEW LETTERS

20 AUGUST 1990

Quantum Oscillations in the Transverse Voltage of a Channel in the Nonlinear Transport Regime

L. W. Molenkamp, H. van Houten, C. W. J. Beenakker, and R. Eppenga Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Differential conductance: G = dI/dV

 $\mu_R = \mu_L + eV$

Thermopower:

 $T_R = T_L + \Delta T$

Measurement setup

Measurement setup

$$S_{Mott} = -rac{\pi k_B^2 T}{3e} rac{1}{G} rac{\partial G}{\partial \mu} \propto rac{1}{G} rac{\partial G}{\partial V_g}$$

$$S_{Mott} \propto rac{1}{G} rac{\partial G}{\partial V_g}$$

$$S_{Mott} \propto rac{1}{G} rac{\partial G}{\partial V_g}$$

$$S_{Mott} \propto rac{1}{G} rac{\partial G}{\partial V_g}$$

$$S_{Mott} \propto rac{1}{G} rac{\partial G}{\partial V_g}$$

$$S_{Mott} \propto rac{1}{G} rac{\partial G}{\partial V_g}$$

Outline

- Transport in Quantum Point Contacts (QPCs)
- 2 Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation
- 3 Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network
- 4 Conclusion

Westervelt group, Harvard, 1996

Self-sensing tips

Laser detection of the cantilever is forbidden, therefore:

- Use of piezoelectric cantilever, home-coated
- Glue a tungstene wire (eventually FIB-etched) on a tuning fork
- Glue a commercial tip on a tuning fork

M. A. Eriksson, Appl. Phys. Lett. (1996) (Westervelt group, Harvard)

M. A. Eriksson, Appl. Phys. Lett. (1996) (Westervelt group, Harvard)

See also: M. A. Topinka et al., Nature **410** (2001). R. Crook et al., Science, **312** (2006). N. Paradiso et al., Phys. Rev. Lett., **108** (2012). A. A. Kozikov et al., New J. Phys. **15** (2013)

The attached video can be found <u>here</u> Feel free to use it on pedagogical purposes.

Visual: Benjamin Kuperberg

Outline

- Transport in Quantum Point Contacts (QPCs)
- 2 Thermopower
 - The Seebeck coefficient
 - Thermopower of quantum point contacts
 - The Mott relation
- 3 Scanning gate thermoelectric microscopy
 - Scanning gate microscopy
 - SGTM on a QPC
 - SGTM on an InGaAs network
- 4 Conclusion

Conclusion

- We explore thermopower of two-dimensional electron gases
- A local approach has been developed, inspired by scanning gate microscopy
- In the future, we will focus on other signals (thermal conductivity and Peltier coefficient) and on different materials (graphene)

Conclusion

Thank you, and let's go to the Spa!

