

IMAGING THE MULTI-TEMPORAL DYNAMICS OF PHOTOCARRIERS AT THE NANOMETER SCALE

Pablo Fernández Garrillo^{1,2,3}, Lukasz Borowik^{1,2}, Florent Caffy^{1,3}, Renaud Demadrille^{1,3}, Benjamin Grévin^{1,3}

- ¹ Univ. Grenoble Alpes, F-38000 Grenoble, France
- ² CEA, LETI, MINATEC Campus, F-38054 Grenoble, France.
- ³ CEA, CNRS, INAC-SPrAM, F-38054 Grenoble, France.

WHY SOLAR ENERGY?

World energy consumption Million tonnes oil equivalent

Source: BP Statistical Review of World Energy June 2016

350 W/m²

300

Since 1992 worldwide PV capacity doubled up each 2.4 years

Source: Statistical Review of World Energy - Historical Data Workbook BP

Worldwide PV capacity grew by 32% last year only

Source:

www.solarpowereurope.org/insights/n ew-global-market-outlook-2016/

Average Insolation

Black dots represents the theoretical area sufficientient to suply the world's total energy needs of 18 TW with solar power

Source: Matthias Loster, 2010 http://www.ez2c.de/ml/solar land area/

CHARACTERIZATION OF SOLAR CELLS

PHYSICAL KEY **PARAMETERS**

- Carrier mobility µ
- Photo-carrier dynamics τ
- Absorption coefficient α / Gap E_q

WHY TIS IMPORTANT?

 Limits the collection of photo-generated charges by the electrodes of the solar cell.

PHOTO-CARRIER DYNAMICS AT THE **NANOSCALE**

- Real characterization need.
- Assess morphology influence on the performance.

HOW TO MEASURE PHOTO-CARRIER DYNAMICS?

TRANSIENT (Pulsed excitation, decay time)

STEADY-STATE (Modulated excitation, averaged signal)

Photo Conductance (PCD, QSSPC)

Short-Circuit Current (SCCD)/Open-Circuit Voltage (OCVD)

Free Carrier Absorption

Photoluminescence (PL)

Surface Photo Voltage (SPV)

D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, (2006)

SPECTROSCOPY AND/OR MAPPING AT 10 NM SCALE?

Kelvin Probe Force Microscopy

Organic, inorganic and hybrid photovoltaic materials

J. Phys. Chem. Lett. 2015, 6, 2852-2858

JAP 108, 033705 (2010)

KELVIN FORCE MICROSCOPY: PRINCIPLE

$$V_{CPD} = \frac{\Phi_{probe} - \Phi_{sample}}{|e|}$$

M. Nonnenmacher et al., Appl. Phys. Lett. 58, 25 (1991) Ł. Borowik et al. Phys. Rev. B 82, 073302 (2010)

Feedback loop to cancel force /force gradient

$$V_{DC} = \pm V_{CPD}$$

Force mode

$$F_{\omega_{elec}} = \frac{\partial C}{\partial z} \sin(\omega t) \left(V_{DC} - V_{CPD} \right) V_{AC}$$

Amplitude modulation (AM-KFM)

Force Gradient mode

$$\frac{\partial F_{\omega_{elec}}}{\partial z} = \frac{\partial^2 C}{\partial z^2} (V_{DC} - V_{CPD}) \times V_{AC} \sin(\omega t)$$

Frequency modulation (FM-KFM)

Resolution

Potential < 5 mV Spatial 5-50 nm

TECHNIQUE'S PRINCIPLE

A curve fit is performed on each pixel to recalculate 2D images of the timeconstants.

NATURE IS NOT THAT SIMPLE: ACCOUNTING FOR TWO SPV CONTRIBUTIONS

EXPERIMENTAL SETUP

EXTERNAL ILLUMINATION

Red, green and blue lasers

DC to 10 MHz

Power 0.2 to 80 mW

MULTI-DYNAMICAL IMAGING OF A LARGE-SCALE HETEROGENEOUS [71]PCBM:PDBS-TQX BLEND

PHOTOCARRIERS DYNAMICS STRONGLY INFLUENCED BY SAMPLE'S MORPHOLOGY!

SURFACE PHOTO-VOLTAGE DYNAMICS IN BHJ ORGANIC PHOTOVOLTAICS

MULTI-DYNAMICAL IMAGING OF A NANO-PHASE SEGREGATED [70]PCBM:PDBS-TQX BLEND

IMAGING THE MINORITY CARRIER LIFETIME VARIATIONS IN POLY-CRYSTALLINE SILICON

IMAGING THE MINORITY CARRIER LIFETIME VARIATIONS IN POLY-CRYSTALLINE SILICON

MEASUREMENTS ARE SENSITIVE TO SURFACE STATES!

CONCLUSION

Time-resolved imaging of multi-dynamical photophysical processes photovoltaic materials.

Nanometric lateral resolution.

Temporal resolution only limited by the illumination and modulation setup.

Universal nano-characterization tool in the fields of photovoltaics and opto-electronics.

Photo-carrier dynamics of several categories of D-A blends

Investigation of Poly-Si after surface passivation

Implementation in ambient conditions

Comparative analysis with macroscopic measurements

Thank you for your attention!

leti