

Séparation de Phases et Conductivité Ionique dans les Verres Chalcogénures: Une étude par Microscopies en Champ Proche

Andrea Piarristeguy, Michel Ribes, Annie Pradel

Institut Charles Gerhardt Équipe Chalcogénures et Verres, UMR 5253 CNRS Université Montpellier 2, Montpellier, FRANCE

Michel Ramonda

Laboratoire de Microscopie en Champ Proche (LMCP) Université de Montpellier 2, Montpellier, FRANCE

Application: Mémoires électriques

« Programmable Metallization Cell (PMC) Memory Devices »

Système: Verres Ag-Ge-Se(S)

M. N. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Superlattices and Microstructures 34 (2003) 459.

... création de chemins métalliques? ... percolation de zones riches en argent?

Structure / propriétés électriques

Verres massifs

Ag_x(Ge_{0.25}Se_{0.75})_{100-x}

avec 0 < x < 30 % at.

M. A. Ureña, A. A Piarristeguy. M. Fontana, B. Arcondo; SSI 176 (2005) 505. A. Piarristeguy, J. M. Conde Garrido, M. A. Ureña, M. Fontana, B. Arcondo; J. Non-Cryst.Sol. 353 (2007) 3314. Saut brusque dans la courbe « conductivité vs teneur en Ag » pour 8-10% at. Ag

Étude microstructurale : FE-SEM et EFM

FE-SEM - Microscopie électronique à effet de champ

- Hétérogénéité chimique
- **EFM Microscopie à force électrostatique**

→ Hétérogénéité électrique

2^{eme} balayage: *EFM*

Tension appliquée entre l'échantillon et la pointe du cantilever AFM

Constante diélectrique élevée \longrightarrow attraction forte Constante diélectrique faible \longrightarrow attraction faible

Étude microstructurale : FE-SEM et EFM

Étude microstructurale des verres Ag_x(Ge_{0.25}Se_{0.75})_{100-x}

> ✓ Le saut de conductivité se produit lorsque la phase riche en Ag se met à connecter.

> > Seuil de percolation

Étude microstructurale des verres Ag-As-S

FE-SEM

Ag₂S-As₂S₃ (10%Ag)

EFM -3V

1.0µm

 $Ag_2S-As_2S_3$ (4%Ag)

Étude microstructurale des verres Ag-Ge-S

E. Bychkov, V. Tsegelnik, Yu. Vlasov, A. Pradel, M. Ribes, J. Non-Cryst. Solids 208, 1 (1996).

A. Pradel, N. Kuwata, M. Ribes, J. Phys.: Condens. Matter 15, 1561 (2003).

Ag₂S-GeS-GeS₂ (16,7%Ag)

Verres Ag_x(Ge_{0.25}Se_{0.75})_{100-x}

Composition : EDX, microsonde...

Microscopie à Force Electrostatique

Le changement en fréquence est proportionnel au gradient de force électrique qui agit sur la pointe du cantilever :

 ∂F_{elec}

 Δf :

Permittivité relative de chaque phase : EFM

Ag15

Analyse qualitative

Торо

Permittivité relative de chaque phase : EFM

Phase conductrice

Phase non conductrice

La différence en concavité reflète une différence en constante diélectrique. Ni la phase riche en argent ni la phase pauvre en argent n'ont la même constante diélectrique quand on change la teneur en argent. Leur composition chimique change donc avec la teneur en argent -

Conductivité de chaque phase : C-AFM

 C-AFM: Microscopie à force atomique conductrice (Conductive Atomic Force Microscopy)

Le courant qui traverse la phase riche en Ag augmente avec la tension appliquée, alors que pratiquement aucun courant ne passe dans la phase pauvre en Ag.

Conductivité de chaque phase : C-AFM

 C-AFM: Microscopie à force atomique conductrice (Conductive Atomic Force Microscopy)

Évaluation qualitative de la conductivité

Si le contact est supposé circulaire et ohmique, la relation entre la résistance R et la résistivité ρ est donnée par la formula; $R \sim \rho / 4r$ où r est le rayon du contact.

Pour un rayon de la pointe : r~ 10 nm

 σ varie de 0,3 x 10⁻⁶ Ω⁻¹cm⁻¹

 à 3 x 10⁻⁶ Ω⁻¹cm⁻¹

avec l'augmentation de la teneur en argent dans les verres.

Conclusion

Verres Ag-Ge(As)-Se(S)

• Hétérogénéités électriques dues à une séparation de phases.

 Existence d'un seuil de percolation avec une augmentation abrupte de la conductivité.

Verres Ag_x(Ge_{0.25}Se_{0.75})_{100-x}

Avec l'augmentation de la teneur en argent, la composition des phases riches et pauvres en argent changent.

Complémentarité entre l'EFM et C-AFM.

Conclusion

Verres Ag-Ge(As)-Se(S)

- Hétérogénéités électriques dues à une séparation de phases.
- Existence d'un seuil de percolation avec une augmentation abrupte de la conductivité.
- Verres $Ag_x(Ge_{0.25}Se_{0.75})_{100-x}$
 - Avec l'augmentation de la teneur en argent, la composition des phases riches et pauvres en argent changent.
 - Complémentarité entre l'EFM et C-AFM.

Merci beaucoup pour votre attention !!