

FABRICATION DE SONDES POUR LE CHAMP PROCHE OPTIQUE EN TECHNOLOGIE SOL-GEL

MOURCHED Bachar Doctorant

Directeurs de thèse: GALL-BORRUT Pascale

KRIBICH Raphael

- 1. Présentation du projet
- 2. Méthodes de fabrication des sondes
- 3. Résultats
- 4. Conclusion et perspectives

Les microscopies :

<u>Microscopie optique classique</u>
<u>Microscopie électronique</u>
<u>Microscopie à sonde locale</u>

Interaction locale sonde-échantillon (force ou particule)

Sonde de taille nanométrique

Résolution nanométrique

Microscopie à force atomique (AFM) Microscopie à effet tunnel électronique (STM) Microscopie en champ proche optique (SNOM)

Microscopie en champ proche optique (SNOM)

Comparatif des caractéristiques des sondes commerciales

type de sonde Caract <u>é</u> ristiques	Fibre optique étirée	Cantiliver Silicium
Matériau de base	Verre :peu couteux	Silicium monocristallin Couteux
Process de fabrication	Unitaire peu reproductible	Collectif reproductible
Fragilité lors de l'utilisation	fragile	Peu fragile 😳
Modes d'utilisation	Collection et/ou Source	/ source
Fonctions optiques integrées	guidage	/

Comparatif de sondes

type de sonde Caracteristiques	Fibre optique étirée	Cantiliver Silicium	Notre proposition de sonde
Matériau de base	Verre :peu couteux	Silicium monocristallin Couteux	Hybride sol-gel: peu couteux
Process de fabrication	Unitaire peu reproductible	Collectif reproductible	Collectif reproductible
Fragilité lors de l'utilisation	fragile	Peu fragile	Peu fragile
Modes d'utilisation	Collection et/ou Source	/ source	Collection et/ou source
Fonctions optiques integrées	guidage	/	Guidage Selection de longueur d'onde

Présentation du projet

Résultats

> <u>Objectif du projet</u>

- Système levier-pointe en sol-gel
- Mode source et mode collection

photodetecteur/photodiode

 Circuits optiques

Matériau de base de la sonde : organo-mineral Synthèse et procédé: sol-gel

chimie douce (basse énergie)

réseau mineral + réseau organique

propriétes mécaniques, optiques et physiques

indice et épaisseur réglables (guides d'onde)

circuits optiques integrés

bas coût

1. <u>Gravure face arrière</u>

Propriétés des principales solutions de gravure

Agent d'attaque	Masque	Commentaires
EDP (Ethylenediamine)	SiO ₂ , SiN, Au, Ag, Cr, Ta	Toxique
ТМАН	SiO ₂ , SiN	Liquide
КОН	SiN, Cr, Au	Liquide
Hydrazine	SiO ₂ , SiN, Metals	Toxique & explosif
XeF2	Résine, Al, Au, SiO ₂ , SiN ₄ , NiTi	Gaz

Phase gazeuse

T°ambiante

4

Sublimation à P=4 Torr soit ~ 5.33 mbar

Gravure quasi isotropique

Gravure en XeF2

<u>Résultats d'attaque</u>

Agent d'attaque	Durée d'attaque	épaisseur de sol-gel attaquée	épaisseur de Si attaquée	Rapport de gravure	Centrale de technologie
КОН	5 mn	6 µm	30 µm	6/30	CTM, UM2
ТМАН	1h 35mn	6 µm	180 µm	6/180	CTM, UM2
XeF2	6h	Ο μm	500 µm	0/500	Minerve (IEF), Orsay

<u>Premières structures obtenues</u>

pyramides en sol-gel restants après l'attaque du Si par XeF2 microscope électronique à balayage (MEB)

2. <u>Démoulage</u>

Premières structures obtenues

pyramides en sol-gel restants après démoulage du sol-gel microscope électronique à balayage (MEB)

Gravure XeF2	démoulage
Etapes classiques	Association d'étapes à optimiser
Durée moyenne:2 journées	Durée moyenne:plus courte
Non reproductible (destruction du moule)	Reproductible (bas coût)

18

Densité d'énergie pour un levier-pointe totalement métallisée

Conclusion: Maîtrise du procédé sol-gel Maîtrise de la fabrication et la libération des pointes (moule Si) Ecriture et alignement des leviers sur les pointes Libération des structures en cours

Perspectives: Tester les structures suspendues (optique, mécanique) Intégrer les sous-ensembles (sonde + circuits optiques)

Remerciements : ETIENNE Pascal (laboratoire L2C) CHARLES CONTEN

BELIER Benoit ((CTU)IEF-minerve, Universite Paris-Sud 11(Orsay)) Control de Centrale de Ce Merci de votre attention

Pointe creuse commerciale en mode source (T=10exp(-5))

